Môn Toán Lớp 6: helpppppppppppppppppppppppppppppppppp đề: Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phươ

Môn Toán Lớp 6: helpppppppppppppppppppppppppppppppppp
đề:
Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.

2 bình luận về “Môn Toán Lớp 6: helpppppppppppppppppppppppppppppppppp đề: Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phươ”

  1. Giải đáp:
     
    Lời giải và giải thích chi tiết:
    Ta có:
    Gọi x^2 = ab + 4
    => ab = x^2 – 4
    => ab = x^2 – 2^2
    => ab = (x – 2)(x + 2)
    (x + 2) – (x – 2) = 4
    Với mọi số tự nhiên a luôn tồn tại số tự nhiên b (b = a + 4) sao cho ab + 4 là số chính phương.

    Trả lời

Viết một bình luận